Tugas
II : Penyelesaian Program Linear dengan Metode Simpleks
· Persoalan
Cj
|
80
|
100
|
0
|
0
|
0
|
|||
Basis
|
X₁
|
X₂
|
S₁
|
S₂
|
S₃
|
bj
|
Rasio
|
|
S₁
|
0
|
3
|
2
|
1
|
0
|
0
|
18
|
|
S₂
|
0
|
2
|
4
|
0
|
1
|
0
|
20
|
|
S₃
|
0
|
0
|
1
|
0
|
0
|
0
|
4
|
|
Zj
|
||||||||
Cj - Zj
|
·
Penyelesaian
Cj
|
80
|
100
|
0
|
0
|
0
|
|||
Basis
|
X₁
|
X₂
|
S₁
|
S₂
|
S₃
|
bj
|
Rasio
|
|
S₁
|
0
|
3
|
2
|
1
|
0
|
0
|
18
|
9
|
S₂
|
0
|
2
|
4
|
0
|
1
|
0
|
20
|
5
|
S₃
|
0
|
0
|
1
|
0
|
0
|
0
|
4
|
4
|
Zj
|
||||||||
Cj - Zj
|
1.
Kolom kunci didapatkan
dari nilai Cj yang maksimum. Nilai maksimum terdapat pada kolom X₂,
maka kolom X₂ adalah kolom kunci.
2.
Hasil dari rasio
didapat dari nilai bj dibagi dengan kolom kunci.
3.
Terlihat titik temu
antara kolom kunci dan baris kunci yang dinamakan pivot.
Cj
|
80
|
100
|
0
|
0
|
0
|
|||
Basis
|
X₁
|
X₂
|
S₁
|
S₂
|
S₃
|
bj
|
Rasio
|
|
S₁
|
0
|
3
|
0
|
1
|
0
|
0
|
10
|
3,33
|
S₂
|
0
|
2
|
0
|
0
|
1
|
0
|
4
|
2
|
X₂
|
100
|
0
|
1
|
0
|
0
|
0
|
4
|
∞
|
Zj
|
0
|
100
|
0
|
0
|
0
|
400
|
||
Cj - Zj
|
80
|
0
|
0
|
0
|
0
|
Baris
1
(1,1)
3
̶ 2(0) = 3

(1,2)
2
̶ 2(1) = 0

(1,3)
1
̶ 2(0) = 1

(1,4)
0
̶ 2(0) = 0

(1,5)
0
̶ 2(0) = 0

(1,6)
18
̶ 2(4) = 10

Baris
2
(2,1)
2
̶ 4(0) = 2

(2,2)
4
̶ 4(1) = 0

(2,3)
0
̶ 4(0) = 0

(2,4)
1
̶ 4(0) =
1

(2,5)
0
̶ 4(0) = 0

(2,6)
20
̶ 4(4) = 4

*Nilai
Zj adalah jumlah keseluruhan hasil kali antara nilai pada kolom Cj dengan nilai
pada kolom lain yang sebaris.
Cj
|
80
|
100
|
0
|
0
|
0
|
|||
Basis
|
X₁
|
X₂
|
S₁
|
S₂
|
S₃
|
bj
|
Rasio
|
|
S₁
|
0
|
0
|
0
|
1
|
-1,5
|
0
|
4
|
∞
|
X₁
|
80
|
1
|
0
|
0
|
0,5
|
0
|
2
|
2
|
X₂
|
100
|
0
|
1
|
0
|
0
|
0
|
4
|
∞
|
Zj
|
80
|
100
|
0
|
40
|
0
|
560
|
||
Cj - Zj
|
0
|
0
|
0
|
-40
|
0
|
Baris
1
(1,1)
3
̶ 3(1) = 0

(1,2)
0
̶ 3(0) = 0

(1,3)
1
̶ 3(0) = 1

(1,4)
0
̶ 3(0,5) = -1,5

(1,5)
0
̶ 3(0) = 0

(1,6)
10
̶ 3(2) = 4

Baris
3
(3,1)
0
̶ 0(1) = 0

(3,2)
1
̶ 0(0) = 1

(3,3)
0
̶ 0(0) = 0

(3,4)
0
̶ 0(0,5) = 0

(3,5)
0
̶ 0(0) = 0

Social Plugin